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ABSTRACT 
 
The recent development of a probe-corrected poly-
planar near field antenna measurement technique [1] 
necessitated the development of general-purpose 
simulation tools that could be used within the 
validation campaign.  This paper demonstrates through 
numerical simulation and experimental measurement a 
new, generally applicable, near field simulation tool 
based on a hybrid physical-optics (PO) reaction-
theorem (RT) formulation that is capable of supplying 
simulations of any of the near field measurement 
systems that are currently found in use today.  This is 
of interest because it enables 1) an engineer to plan and 
optimise a measurement campaign before committing 
valuable facility time, 2) error terms within the facility 
error budget can be accurately determined, 3) the 
probe-correction algorithms that form a crucial 
constituent of any transformation routine to be 
carefully verified. 
 
1. INTRODUCTION 
 
Any near field measurement can essentially be 
simulated by evaluating the complex coupling 
coefficient between the antenna under test (AUT) and 
the near field probe at each point over the simulated 
acquisition surface for each sampled polarisation for 
the frequency at which the measurement is to be taken.  
In principle then, it would be possible to obtain the 
mutual coupling coefficient (S21) between the AUT and 
the scanning probe from a three-dimensional 
electromagnetic full-wave solver for each of the 
positions at which near field samples are to be 
recorded.  This approach would have the advantage of 
potentially introducing the least number of assumptions 
and approximations, and therefore could, in theory, 
yield the most accurate predications. 
 
Unfortunately, although many solvers are available 
employing say, the finite difference time domain 
(FDTD), or the finite element methods (FEM), etc. 
they are generally thought to be inappropriate for 
simulating problem spaces as electrically large as those 
needed to enclose a complete near field measurement 
system.  This is a direct consequence of the extended 
processing times and the amount of computer resources 
required.  Hence, recourse to alternative less general, 
but more efficient, techniques becomes unavoidable.  
However, matters are complicated by recognising that, 
the poly-planar configuration is capable of yielding full 
4 steradian far field antenna patterns.  Thus, the 
problems of simulating the near field measurement are 
perhaps more akin to those associated with the 
simulation of cylindrical or spherical measurement 
configurations necessitating the harnessing of a very 
general approach. 
 

2. METHOD 
 
Provided that the antennas, and the circuits in which 
they are placed, including the source and load, are 
reciprocal then the mutual coupling between two 
antennas can be found from knowledge of the fields 
radiated by these antennas in isolation and from the 
reaction theorem.  If the fields radiated by an antenna 
are known over a convenient, arbitrary, closed surface 
that surrounds the antenna, then the field radiated by 
this antenna at any point in the region of space outside 
this surface can be obtained from the Kirchhoff-
Huygens principal.  As illustrated schematically below 
in Figure 1, if the Kirchhoff-Huygens formula is used 
to obtain the fields radiated by antenna 1 over a closed 
surface that surrounds antenna 2, provided that the 
fields radiated by antenna 2 are also known over this 
surface, then the surface integral form of the reaction 
theorem can be used to calculate the mutual impedance 
between these antennas.  The mutual admittance 
between the antennas can then be found from the 
mutual impedance.  These admittances can be used to 
populate an admittance matrix from which the 
equivalent normalised scattering matrix can be easily 
obtained.  The transmission scattering coefficient, 
when evaluated with the two antennas suitably 
displaced can be recognised as constituting a single 
sampling node within a near field measurement.  By 
repeating this for every point in the near field 
measurement a full acquisition can be constructed.  As 
the displacement and orientation of the coupled 
antenna system can be chosen arbitrarily, provided 
only that the enclosing surfaces do not intersect, any 
near field (or quasi far field) measurement system can 
be simulated. 
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Figure 1: Geometry of KH-RT 

These measurement simulations include artefacts 
resulting from the vector pattern function, i.e. the 
directivity, of the scanning near field probe.  This is 
especially important when simulating measurements 
taken using a planar, or poly-planar, facility, the effect 
includes something similar to a direct multiplication of 
the probe pattern with the antenna pattern in the far 
field.  This results from the convolution of the near 
field pattern of the probe with that of the AUT, which 
may be visualised directly from the mechanical 
operation of the scanner.  It is not usually possible to 
neglect these effects in a planar range because of the 
large angles of validity required and the short 
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measurement distance.  Hence, simulations produced 
from this procedure can be used to rigorously verify 
the corrections made for the modal receiving 
coefficients (e.g. plane wave) of the scanning probe 
during the near field to far field transformation process.  
The following sections present the details of this 
simulation technique. 
 
Field Propagation: Kirchhoff-Huygens Principal 
The Kirchhoff-Huygens principal is a powerful 
technique for determining the field in a source free 
region outside an enclosing surface from knowledge of 
the field distribution over that surface.  It is applicable 
to arbitrary shaped “apertures” over which both the 
electric and magnetic fields are prescribed.  When 
expressed mathematically, the vector electric field at a 
point P, radiated by a closed Huygens surface S is [2], 
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Similarly, the magnetic field at a point P, radiated by a 
closed Huygens surface S is, 
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Here, E and H are taken to denote the electric and 
magnetic fields respectively over the enclosing surface, 
 denotes the first order spherical wave function 
(which is also known as the free space Green’s 
function), 
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where r is the displacement of the field point from the 
elemental source and is related to the co-ordinates of 
the elemental Huygens source r0 and the co-ordinates 
of the field point r by, r = |r-r0|.   is the angular 
frequency, k0 is the free space propagation constant, 
and n is the outward pointing unit surface normal.   
and  are the permittivity and permeability of the 
medium respectively through which the field is 
propagating.  The differential vector operator 0 
expressed in the source co-ordinate system acting on  
can easily be shown to be, 
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Thus, the Kirchhoff formula for the vector electric and 
magnetic vector fields at a point p anywhere outside 
the volume of space enclosed by the bounding surface 
S can be expressed as, 
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and, 
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Thus, if the electric and magnetic vector fields are 
known over surface 1, the corresponding fields over 
surface 2 can be determined by evaluating expressions 
(5) and (6).  Unfortunately, the utilisation of numerical 
integration techniques becomes inevitable for all but 
the most elementary cases. 
 
Mutual Impedance: Reaction Theorem 
Provided that the electric and magnetic field vectors 
(E1, H1) and (E2, H2) are of the same frequency and 
monochromatic then the mutual impedance, Z21, 
between antenna 1 and 2 in the environment described 
by ,  can be expressed, from the reaction theorem, in 
terms of a surface integration as [3], 

  
2

 ˆ
1

2112
221111

21
21

S

dsnHEHE
III

V
Z    (7) 

Again, n is taken to denote the outward pointing 
surface unit normal.  The subscript 1 denotes 
parameters associated with antenna 1 whilst the 
subscript 2 denotes quantities associated with antenna 
2, i.e. S2 is a surface that encloses antenna 2, but not 
antenna 1.  Here, I11 is the terminal current of antenna 1 
when it transmits and similarly, I22 is the terminal 
current of antenna 2 when it transmits.  From 
reciprocity, the mutual impedance, Z12 = Z21, and is 
related to the coupling between two antennas.  Clearly 
then the mutual impedance will also be a function of 
the displacement between the antennas, their relative 
orientations, and their respective polarisation 
properties. 
 
The terminal current of these transmitting antennas, I11 
and I22 can be obtained from the knowledge of the 
power injected at the port, P1 and P2 which is typically 
taken to be unity, and is specified within the modelling 
tool, and the port impedance Z1 or Z2 using, 
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If for example, a waveguide port has been used to 
stimulate the problem, the impedance Z1 can be taken 
to be the impedance of the mode excited at that port.  
At 10 GHz, the TE10 mode is the only mode to 
propagate in the waveguide sections of the waveguide 
horn and the waveguide probe.  Thus, the impedance at 
each port can be taken to be, 
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Derivation of Two-Port Scattering Matrix 
 
The self-impedance Z11 and Z22 can be obtained in 
many ways.  However, they are perhaps most easily 
obtained from whichever three dimensional full-wave 
electromagnetic solver was used to obtain the radiated 
fields from the isolated antennas.  As an admittance is 
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merely the reciprocal of an impedance, an admittance 
matrix [Y] representing this two port coupled systems 
can be readily populated so that, 
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It is well known that the re-normalised scattering 
matrix, [S], can be calculated from this admittance 
matrix and is used to describe what fraction of the 
signal is transmitted, or reflected at each port, 
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Here, [Y] = ([Z])-1 and is a diagonal matrix with the 
desired normalising admittance as the diagonal entries, 
i.e. the admittance of the attached transmission line 
which in this case will be equal to the port impedance 
Z1 = Z2 = ZTE.  This can be expressed mathematically 
as, 

  ijYY     (14) 

With i,j, denoting the Kronecker delta where i and j 
are positive integers, 
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The elements S1,2 = S2,1 of [S] are the complex 
transmission coefficients for the coupled antenna 
system which are taken to represent a single point in 
the near field measurement.  This then completes what 
is essentially a method of moments analysis of this 
system.  The near field measurement simulation 
algorithm can be summarised as follows. 
 
1. Use equations 5 and 6 to translate the fields of 

antenna 1 to antenna 2. 
2. Use equation 7 to evaluate the mutual impedance 

and thus the mutual admittance. 
3. Populate the admittance matrix for the two-

antenna system. 
4. Use equation 13 to determine the complex mutual 

coupling coefficient 
5. Repeat steps 1-4 inclusive for each sample point in 

the near field scan. 
6. Rotate the probe to simulate the sampling of a 

second orthogonal near field component and repeat 
step 1-5 inclusive to generate a second scan and 
thus complete the near field acquisition. 

 
The generality of this treatment can be highlighted by 
observing that the mutual coupling coefficients of a 
finite m-element array can also be obtained from this 
procedure by merely populating a larger, i.e. m by m, 
admittance matrix. 
 
3. PRELIMINARY VERIFICATION 
 
The amount of power coupled between a pair of 
polarisation matched loss-less dipoles that are perfectly 
matched to their respective source and load, and that 
are in the far field of one another can be obtained from 
the well known Friis transmission formula. 
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Conversely, the mutual coupling coefficient can be 
obtained by taking the E and H-fields from a half-
wavelength dipole from a full wave-solver, microwave 
studio in this case, and using the PO-RT algorithm set 
out above.  As the antennas that are transmitting and 
receiving are of exactly the same design GR = GT.  The 
gain of the dipole at 10 GHz along the x-axis was 
approximately 2.16dB.  Figure 2 below contains a 
comparison of the mutual coupling obtained using 
these two contrasting methods.  From inspection, it is 
clear that the agreement is encouraging with 
differences only becoming more pronounced as the 
separation becomes smaller, i.e. in the region where the 
far field approximation within the Friis transmission 
equation is most significant. 
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Figure 2: Mutual couping between adjacent dipoles 

 
4. NEAR FIELD MEASUREMENT SIMULATION 
 
Figure 3 below contains a schematic representation of 
the near field probe and a standard gain horn (SGH) 
which was used as an AUT.  The faint grey ellipsoidal 
surface that can be seen to enclose these instruments 
represents the Huygens surface that was used with the 
PO-RT computational electromagnetic simulation 
(CEM) simulation.  The scanning probe consisted of an 
Orbit RF AL-2000-PRB-90 open-ended rectangular 
waveguide probe combined with a surface wave 
absorbing (SWAM) cone that was designed to 
minimise reflections from the mechanical interface 
located towards the rear of the probe.  A detailed 
description of the modelling and verification thereof 
can be found within the literature [4].  Again similarly 
good agreement was attained between the CEM model 
of the SGH and measurements taken using a compact 
antenna test range (CATR). 

 
Figure 3: Near field probe and AUT (SGH) 

A near field measurement of the SGH was taken using 
a planar near field antenna test range (PNATR).  The 
acquisition window was chosen to be ±0.8m in the x-y 
plane whilst the distance between the SGH and the 
near field probe in the z-direction was set at 10.0 cm, 
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i.e. approximately 3 wavelengths (3) at 10.0 GHz.  
This separation insured that the probe was outside the 
reactive near field, made the first order truncation angle 
as large as possible (83 in azimuth and elevation) 
and attempted to minimise the detrimental effects 
arising from multiple reflections that can be induced 
between the AUT and the scanning probe.  Although 
phenomena arising from the first two of these effects 
will be included within the measurement simulation, 
multiple reflections between the AUT and the probe 
are ignored. 
 
The separation between adjacent measurement points 
was one half wavelength as this satisfied the Nyquist 
sampling criteria, and in the absence of errors in the 
position at which measurements are taken, will 
guarantee alias free far field patterns over the entire 
forward half-space.  The SGH was installed in the rage 
so that it was principally “y-polarised” with respect to 
the axes of the near field range. 
 
5. RESULTS 
 
Figure 4 and 5 below contain a comparison of 
horizontal and vertical cuts through the simulated near 
field measurement and the actual near field 
measurement. 
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Figure 4: Near field cut in x-axis 
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Figure 5: Near field cut in y-axis 

The agreement between the simulation and 
measurement is encouraging in both planes and it 
suggests that the simulation code is capable of creating 
a simulation of a measurement taken on a near-field 
range.  In particular, the cut in the y-axis, Figure 5, 
where there is less energy as you move away from the 

centre shows very good agreement.  It is only when the 
magnitude of the coupling is at lower levels, i.e. < -
40dB, that the characteristics of the two lines begin to 
diverge. 
 
Inevitably, the measurement contains uncertainties 
arising from imperfections in alignment (both in 
translation, x, y, z and rotation in azimuth, elevation, 
roll), multi-path (scattering from the chamber walls and 
the frame of the robotic positioner), multiple 
reflections between the antenna and the probe, and 
imperfections in the manufacture of both the probe and 
AUT.  None of these error terms are included within 
the near field simulation. 
 
6. DISCUSSION AND CONCLUSIONS 
 
This paper has introduced and demonstrated initial 
empirical verification a general-purpose method for the 
simulation of measurements taken using any of the 
near field geometries available today that includes 
provision for probe pattern effects which are often one 
of the largest terms in the facility level error budget. 
 
Unfortunately, the evaluation of the transmission 
coefficient S21 requires the computationally expensive 
evaluation of a sextuple integration to obtain each near 
field sample point.  However, the simulation of an 
entire near field measurement constitutes a coarsely 
granular problem.  Specifically, each sampling node 
can be evaluated independently of every other 
sampling node and in this way, provided only that a 
sufficiently large array, i.e. cluster, of computers is 
available, the total processing time is in principal equal 
to the time taken to evaluate a single measurement 
point. 
 
Finally, it has also been highlighted that this technique 
neither relies on the modal expansion method for the 
representation of electromagnetic waves nor does it 
utilise inversions of conventional probe pattern 
correction algorithms.  Thus, it provides an 
independent approach to the verification of existing 
near field to far field transformation algorithms. 
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